Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Math Biosci ; 371: 109181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537734

RESUMEN

We use a compartmental model with a time-varying transmission parameter to describe county level COVID-19 transmission in the greater St. Louis area of Missouri and investigate the challenges in fitting such a model to time-varying processes. We fit this model to synthetic and real confirmed case and hospital discharge data from May to December 2020 and calculate uncertainties in the resulting parameter estimates. We also explore non-identifiability within the estimated parameter set. We find that the death rate of infectious non-hospitalized individuals, the testing parameter and the initial number of exposed individuals are not identifiable based on an investigation of correlation coefficients between pairs of parameter estimates. We also explore how this non-identifiability ties back into uncertainties in the estimated parameters and find that it inflates uncertainty in the estimates of our time-varying transmission parameter. However, we do find that R0 is not highly affected by non-identifiability of its constituent components and the uncertainties associated with the quantity are smaller than those of the estimated parameters. Parameter values estimated from data will always be associated with some uncertainty and our work highlights the importance of conducting these analyses when fitting such models to real data. Exploring identifiability and uncertainty is crucial in revealing how much we can trust the parameter estimates.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/transmisión , COVID-19/epidemiología , Humanos , Missouri/epidemiología , Incertidumbre , Número Básico de Reproducción/estadística & datos numéricos , Modelos Epidemiológicos
2.
Nat Commun ; 13(1): 1155, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241662

RESUMEN

Many locations around the world have used real-time estimates of the time-varying effective reproductive number ([Formula: see text]) of COVID-19 to provide evidence of transmission intensity to inform control strategies. Estimates of [Formula: see text] are typically based on statistical models applied to case counts and typically suffer lags of more than a week because of the latent period and reporting delays. Noting that viral loads tend to decline over time since illness onset, analysis of the distribution of viral loads among confirmed cases can provide insights into epidemic trajectory. Here, we analyzed viral load data on confirmed cases during two local epidemics in Hong Kong, identifying a strong correlation between temporal changes in the distribution of viral loads (measured by RT-qPCR cycle threshold values) and estimates of [Formula: see text] based on case counts. We demonstrate that cycle threshold values could be used to improve real-time [Formula: see text] estimation, enabling more timely tracking of epidemic dynamics.


Asunto(s)
COVID-19/transmisión , Modelos Epidemiológicos , SARS-CoV-2 , Carga Viral , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/virología , Simulación por Computador , Sistemas de Computación , Epidemias , Hong Kong/epidemiología , Humanos , Modelos Estadísticos , Pandemias , Carga Viral/estadística & datos numéricos
3.
Comput Math Methods Med ; 2022: 6545179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126631

RESUMEN

In this article, we have developed a deterministic Susceptible-Latent-Infectious-Recovered (SLIR) model for diphtheria outbreaks. Here, we have studied a case of the diphtheria outbreak in the Rohingya refugee camp in Bangladesh to trace the disease dynamics and find out the peak value of the infection. Both analytical and numerical investigations have been performed on the model to find several remarkable behaviors like the positive and bounded solution, basic reproductive ratio, and equilibria such as disease extinction equilibrium and disease persistence equilibrium which are characterized depending on the basic reproductive ratio and global stability of the model using Lyapunov function for both equilibria. Parameter estimation has been performed to determine the values of the parameter from the daily case data using numerical technique and determined the value of the basic reproductive number for the outbreak as ℛ 0 = 5.86.


Asunto(s)
Difteria/epidemiología , Epidemias , Modelos Epidemiológicos , Campos de Refugiados , Bangladesh/epidemiología , Número Básico de Reproducción/estadística & datos numéricos , Biología Computacional , Simulación por Computador , Difteria/transmisión , Epidemias/estadística & datos numéricos , Humanos , Dinámicas no Lineales
4.
Comput Math Methods Med ; 2022: 6145242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222685

RESUMEN

A new theoretical model of epidemic kinetics is considered, which uses elements of the physical model of the kinetics of the atomic level populations of an active laser medium as follows: a description of states and their populations, transition rates between states, an integral operator, and a source of influence. It is shown that to describe a long-term epidemic, it is necessary to use the concept of the source of infection. With a model constant source of infection, the epidemic, in terms of the number of actively infected people, goes to a stationary regime, which does not depend on the population size and the characteristics of quarantine measures. Statistics for Moscow daily increase in infected is used to determine the real source of infection. An interpretation of the waves generated by the source is given. It is shown that more accurate statistics of excess mortality can only be used to clarify the frequency rate of mortality of the epidemic, but not to determine the source of infection.


Asunto(s)
Epidemias/estadística & datos numéricos , Modelos Epidemiológicos , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/mortalidad , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/mortalidad , Biología Computacional , Brotes de Enfermedades/estadística & datos numéricos , Humanos , Cinética , Moscú/epidemiología , Pandemias/estadística & datos numéricos , SARS-CoV-2 , Vacunación/estadística & datos numéricos
5.
Antimicrob Resist Infect Control ; 11(1): 3, 2022 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-35000583

RESUMEN

OBJECTIVES: The purpose of this study is to describe the situation of COVID-19 in European countries and to identify important factors related to prevention and control. METHODS: We obtained data from World Health Statistics 2020 and the Institute for Health Metrics and Evaluation (IHME). We calculated the Rt values of 51 countries in Europe under different prevention and control measures. We used lasso regression to screen factors associated with morbidity and mortality. For the selected variables, we used quantile regression to analyse the relevant influencing factors in countries with different levels of morbidity or mortality. RESULTS: The government has a great influence on the change in Rt value through prevention and control measures. The most important factors for personal and group prevention and control are the mobility index, testing, the closure of educational facilities, restrictions on large-scale gatherings, and commercial restrictions. The number of ICU beds and doctors in medical resources are also key factors. Basic sanitation facilities, such as the proportion of safe drinking water, also have an impact on the COVID-19 epidemic. CONCLUSIONS: We described the current status of COVID-19 in European countries. Our findings demonstrated key factors in individual and group prevention measures.


Asunto(s)
COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2 , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/mortalidad , Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/estadística & datos numéricos , Europa (Continente)/epidemiología , Salud Global/estadística & datos numéricos , Humanos , Modelos Lineales , Pandemias/estadística & datos numéricos
6.
Comput Math Methods Med ; 2022: 7772263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069795

RESUMEN

COVID-19 is a world pandemic that has affected and continues to affect the social lives of people. Due to its social and economic impact, different countries imposed preventive measures that are aimed at reducing the transmission of the disease. Such control measures include physical distancing, quarantine, hand-washing, travel and boarder restrictions, lockdown, and the use of hand sanitizers. Quarantine, out of the aforementioned control measures, is considered to be more stressful for people to manage. When people are stressed, their body immunity becomes weak, which leads to multiplying of coronavirus within the body. Therefore, a mathematical model consisting of six compartments, Susceptible-Exposed-Quarantine-Infectious-Hospitalized-Recovered (SEQIHR) was developed, aimed at showing the impact of stress on the transmission of COVID-19 disease. From the model formulated, the positivity, bounded region, existence, uniqueness of the solution, the model existence of free and endemic equilibrium points, and local and global stability were theoretically proved. The basic reproduction number (R 0) was derived by using the next-generation matrix method, which shows that, when R 0 < 1, the disease-free equilibrium is globally asymptotically stable whereas when R 0 > 1 the endemic equilibrium is globally asymptotically stable. Moreover, the Partial Rank Correlation Coefficient (PRCC) method was used to study the correlation between model parameters and R 0. Numerically, the SEQIHR model was solved by using the Rung-Kutta fourth-order method, while the least square method was used for parameter identifiability. Furthermore, graphical presentation revealed that when the mental health of an individual is good, the body immunity becomes strong and hence minimizes the infection. Conclusively, the control parameters have a significant impact in reducing the transmission of COVID-19.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Cuarentena , SARS-CoV-2 , Estrés Fisiológico , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/fisiopatología , Biología Computacional , Simulación por Computador , Humanos , Conceptos Matemáticos , Modelos Estadísticos , Pandemias/estadística & datos numéricos , Cuarentena/psicología , Estrés Psicológico
7.
Comput Math Methods Med ; 2022: 3105734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069778

RESUMEN

In this paper, we proposed and analyzed a realistic compartmental mathematical model on the spread and control of HIV/AIDS-pneumonia coepidemic incorporating pneumonia vaccination and treatment for both infections at each infection stage in a population. The model exhibits six equilibriums: HIV/AIDS only disease-free, pneumonia only disease-free, HIV/AIDS-pneumonia coepidemic disease-free, HIV/AIDS only endemic, pneumonia only endemic, and HIV/AIDS-pneumonia coepidemic endemic equilibriums. The HIV/AIDS only submodel has a globally asymptotically stable disease-free equilibrium if ℛ 1 < 1. Using center manifold theory, we have verified that both the pneumonia only submodel and the HIV/AIDS-pneumonia coepidemic model undergo backward bifurcations whenever ℛ 2 < 1 and ℛ 3 = max{ℛ 1, ℛ 2} < 1, respectively. Thus, for pneumonia infection and HIV/AIDS-pneumonia coinfection, the requirement of the basic reproduction numbers to be less than one, even though necessary, may not be sufficient to completely eliminate the disease. Our sensitivity analysis results demonstrate that the pneumonia disease transmission rate ß 2 and the HIV/AIDS transmission rate ß 1 play an important role to change the qualitative dynamics of HIV/AIDS and pneumonia coinfection. The pneumonia infection transmission rate ß 2 gives rises to the possibility of backward bifurcation for HIV/AIDS and pneumonia coinfection if ℛ 3 = max{ℛ 1, ℛ 2} < 1, and hence, the existence of multiple endemic equilibria some of which are stable and others are unstable. Using standard data from different literatures, our results show that the complete HIV/AIDS and pneumonia coinfection model reproduction number is ℛ 3 = max{ℛ 1, ℛ 2} = max{1.386, 9.69 } = 9.69 at ß 1 = 2 and ß 2 = 0.2 which shows that the disease spreads throughout the community. Finally, our numerical simulations show that pneumonia vaccination and treatment against disease have the effect of decreasing pneumonia and coepidemic disease expansion and reducing the progression rate of HIV infection to the AIDS stage.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/epidemiología , Síndrome de Inmunodeficiencia Adquirida/epidemiología , Infecciones por VIH/epidemiología , Neumonía/epidemiología , Infecciones Oportunistas Relacionadas con el SIDA/prevención & control , Infecciones Oportunistas Relacionadas con el SIDA/transmisión , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Síndrome de Inmunodeficiencia Adquirida/transmisión , Número Básico de Reproducción/estadística & datos numéricos , Coinfección , Biología Computacional , Simulación por Computador , Enfermedades Endémicas/prevención & control , Enfermedades Endémicas/estadística & datos numéricos , Modelos Epidemiológicos , Infecciones por VIH/complicaciones , Infecciones por VIH/transmisión , Humanos , Modelos Biológicos , Neumonía/complicaciones , Neumonía/prevención & control , Vacunación
8.
Sci Rep ; 11(1): 24124, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916534

RESUMEN

The quantification of spreading heterogeneity in the COVID-19 epidemic is crucial as it affects the choice of efficient mitigating strategies irrespective of whether its origin is biological or social. We present a method to deduce temporal and individual variations in the basic reproduction number directly from epidemic trajectories at a community level. Using epidemic data from the 98 districts in Denmark we estimate an overdispersion factor k for COVID-19 to be about 0.11 (95% confidence interval 0.08-0.18), implying that 10 % of the infected cause between 70 % and 87 % of all infections.


Asunto(s)
Algoritmos , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/transmisión , Modelos Teóricos , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , COVID-19/virología , Dinamarca/epidemiología , Epidemias/prevención & control , Geografía , Humanos , SARS-CoV-2/fisiología
9.
Comput Math Methods Med ; 2021: 9919700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868347

RESUMEN

In recent years, multiscale modelling approach has begun to receive an overwhelming appreciation as an appropriate technique to characterize the complexity of infectious disease systems. In this study, we develop an embedded multiscale model of paratuberculosis in ruminants at host level that integrates the within-host scale and the between-host. A key feature of embedded multiscale models developed at host level of organization of an infectious disease system is that the within-host scale and the between-host scale influence each other in a reciprocal (i.e., both) way through superinfection, that is, through repeated infection before the host recovers from the initial infectious episode. This key feature is demonstrated in this study through a multiscale model of paratuberculosis in ruminants. The results of this study, through numerical analysis of the multiscale model, show that superinfection influences the dynamics of paratuberculosis only at the start of the infection, while the MAP bacteria replication continuously influences paratuberculosis dynamics throughout the infection until the host recovers from the initial infectious episode. This is largely because the replication of MAP bacteria at the within-host scale sustains the dynamics of paratuberculosis at this scale domain. We further use the embedded multiscale model developed in this study to evaluate the comparative effectiveness of paratuberculosis health interventions that influence the disease dynamics at different scales from efficacy data.


Asunto(s)
Modelos Biológicos , Paratuberculosis/prevención & control , Rumiantes/microbiología , Animales , Número Básico de Reproducción/prevención & control , Número Básico de Reproducción/estadística & datos numéricos , Número Básico de Reproducción/veterinaria , Biología Computacional , Simulación por Computador , Enfermedades Endémicas/prevención & control , Enfermedades Endémicas/estadística & datos numéricos , Enfermedades Endémicas/veterinaria , Interacciones Microbiota-Huesped , Conceptos Matemáticos , Mycobacterium avium subsp. paratuberculosis/crecimiento & desarrollo , Mycobacterium avium subsp. paratuberculosis/patogenicidad , Paratuberculosis/microbiología , Paratuberculosis/transmisión , Sobreinfección/microbiología , Sobreinfección/prevención & control , Sobreinfección/veterinaria
10.
Sci Rep ; 11(1): 23286, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857840

RESUMEN

The reproduction number of an infectious disease, such as CoViD-19, can be described through a modified version of the susceptible-infected-recovered (SIR) model with time-dependent contact rate, where mobility data are used as proxy of average movement trends and interpersonal distances. We introduce a theoretical framework to explain and predict changes in the reproduction number of SARS-CoV-2 in terms of aggregated individual mobility and interpersonal proximity (alongside other epidemiological and environmental variables) during and after the lockdown period. We use an infection-age structured model described by a renewal equation. The model predicts the evolution of the reproduction number up to a week ahead of well-established estimates used in the literature. We show how lockdown policies, via reduction of proximity and mobility, reduce the impact of CoViD-19 and mitigate the risk of disease resurgence. We validate our theoretical framework using data from Google, Voxel51, Unacast, The CoViD-19 Mobility Data Network, and Analisi Distribuzione Aiuti.


Asunto(s)
Número Básico de Reproducción/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/transmisión , Movimiento , Trazado de Contacto , Humanos , Italia/epidemiología , Modelos Teóricos , Distanciamiento Físico , Cuarentena , SARS-CoV-2 , Estados Unidos/epidemiología
11.
PLoS One ; 16(12): e0261424, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34965272

RESUMEN

The COVID-19 outbreak has caused two waves and spread to more than 90% of Canada's provinces since it was first reported more than a year ago. During the COVID-19 epidemic, Canadian provinces have implemented many Non-Pharmaceutical Interventions (NPIs). However, the spread of the COVID-19 epidemic continues due to the complex dynamics of human mobility. We develop a meta-population network model to study the transmission dynamics of COVID-19. The model takes into account the heterogeneity of mitigation strategies in different provinces of Canada, such as the timing of implementing NPIs, the human mobility in retail and recreation, grocery and pharmacy, parks, transit stations, workplaces, and residences due to work and recreation. To determine which activity is most closely related to the dynamics of COVID-19, we use the cross-correlation analysis to find that the positive correlation is the highest between the mobility data of parks and the weekly number of confirmed COVID-19 from February 15 to December 13, 2020. The average effective reproduction numbers in nine Canadian provinces are all greater than one during the time period, and NPIs have little impact on the dynamics of COVID-19 epidemics in Ontario and Saskatchewan. After November 20, 2020, the average infection probability in Alberta became the highest since the start of the COVID-19 epidemic in Canada. We also observe that human activities around residences do not contribute much to the spread of the COVID-19 epidemic. The simulation results indicate that social distancing and constricting human mobility is effective in mitigating COVID-19 transmission in Canada. Our findings can provide guidance for public health authorities in projecting the effectiveness of future NPIs.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Epidemias/prevención & control , SARS-CoV-2 , Viaje/estadística & datos numéricos , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/epidemiología , Canadá/epidemiología , Humanos , Incidencia , Modelos Estadísticos , Distanciamiento Físico , Cuarentena/métodos
12.
Viruses ; 13(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34834987

RESUMEN

The SARS-CoV-2 pandemic is one of the most concerning health problems around the globe. We reported the emergence of SARS-CoV-2 variant B.1.1.519 in Mexico City. We reported the effective reproduction number (Rt) of B.1.1.519 and presented evidence of its geographical origin based on phylogenetic analysis. We also studied its evolution via haplotype analysis and identified the most recurrent haplotypes. Finally, we studied the clinical impact of B.1.1.519. The B.1.1.519 variant was predominant between November 2020 and May 2021, reaching 90% of all cases sequenced in February 2021. It is characterized by three amino acid changes in the spike protein: T478K, P681H, and T732A. Its Rt varies between 0.5 and 2.9. Its geographical origin remain to be investigated. Patients infected with variant B.1.1.519 showed a highly significant adjusted odds ratio (aOR) increase of 1.85 over non-B.1.1.519 patients for developing a severe/critical outcome (p = 0.000296, 1.33-2.6 95% CI) and a 2.35-fold increase for hospitalization (p = 0.005, 1.32-4.34 95% CI). The continuous monitoring of this and other variants will be required to control the ongoing pandemic as it evolves.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Número Básico de Reproducción/estadística & datos numéricos , Evolución Biológica , Genoma Viral , Haplotipos , Humanos , México/epidemiología , Mutación , Nasofaringe/virología , Filogenia , ARN Viral , SARS-CoV-2/clasificación
13.
Epidemiol Infect ; 149: e252, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34839841

RESUMEN

We quantified the potential impact of different social distancing and self-isolation scenarios on the coronavirus disease 2019 (COVID-19) pandemic trajectory in Saudi Arabia and compared the modelling results to the confirmed epidemic trajectory. Using the susceptible, exposed, infected, quarantined and self-isolated, requiring hospitalisation, recovered/immune individuals, fatalities model, we assessed the impact of a non-pharmacological interventions' subset. An unmitigated scenario (baseline), mitigation scenarios (25% reduction in social contact/twofold increase in self-isolation) and enhanced mitigation scenarios (50% reduction in social contact/twofold increase in self-isolation) were assessed and compared to the actual epidemic trajectory. For the unmitigated scenario, mitigation scenarios, enhanced mitigation scenarios and actual observed epidemic, the peak daily incidence rates (per 10 000 population) were 77.00, 16.00, 9.00 and 1.14 on days 71, 54, 35 and 136, respectively. The peak fatality rates were 35.00, 13.00, 5.00 and 0.016 on days 150, 125, 60 and 155, respectively. The R0 was 1.15, 1.14, 1.22 and 2.50, respectively. Aggressive implementation of social distancing and self-isolation contributed to the downward trend of the disease. We recommend using extensive models that comprehensively consider the natural history of COVID-19, social and behavioural patterns, age-specific data, actual network topology and population to elucidate the epidemic's magnitude and trajectory.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Infecciones Asintomáticas/epidemiología , Número Básico de Reproducción/prevención & control , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/transmisión , Hospitalización/estadística & datos numéricos , Humanos , Incidencia , Modelos Teóricos , Distanciamiento Físico , Salud Pública/métodos , Cuarentena , SARS-CoV-2 , Arabia Saudita/epidemiología
14.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34615712

RESUMEN

Zoonotic spillover and hybridization of parasites are major emerging public and veterinary health concerns at the interface of infectious disease biology, evolution, and control. Schistosomiasis is a neglected tropical disease of global importance caused by parasites of the Schistosoma genus, and the Schistosoma spp. system within Africa represents a key example of a system where spillover of animal parasites into human populations has enabled formation of hybrids. Combining model-based approaches and analyses of parasitological, molecular, and epidemiological data from northern Senegal, a region with a high prevalence of schistosome hybrids, we aimed to unravel the transmission dynamics of this complex multihost, multiparasite system. Using Bayesian methods and by estimating the basic reproduction number (R0 ), we evaluate the frequency of zoonotic spillover of Schistosoma bovis from livestock and the potential for onward transmission of hybrid S. bovis × S. haematobium offspring within human populations. We estimate R0 of hybrid schistosomes to be greater than the critical threshold of one (1.76; 95% CI 1.59 to 1.99), demonstrating the potential for hybridization to facilitate spread and establishment of schistosomiasis beyond its original geographical boundaries. We estimate R0 for S. bovis to be greater than one in cattle (1.43; 95% CI 1.24 to 1.85) but not in other ruminants, confirming cattle as the primary zoonotic reservoir. Through longitudinal simulations, we also show that where S. bovis and S. haematobium are coendemic (in livestock and humans respectively), the relative importance of zoonotic transmission is predicted to increase as the disease in humans nears elimination.


Asunto(s)
Número Básico de Reproducción/estadística & datos numéricos , Ganado/parasitología , Schistosoma haematobium/patogenicidad , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis Urinaria/veterinaria , Animales , Bovinos/parasitología , Cabras/parasitología , Humanos , Enfermedades Desatendidas/parasitología , Senegal/epidemiología , Ovinos/parasitología , Zoonosis/parasitología , Zoonosis/transmisión
15.
PLoS Comput Biol ; 17(9): e1009347, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34492011

RESUMEN

We construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective reproduction number, R, from the incidence of an infectious disease in real time and retrospectively. Our approach borrows from Kalman filtering theory, is quick and easy to compute, generalisable, deterministic and unlike many current methods, requires no change-point or window size assumptions. We model R as a flexible, hidden Markov state process and exactly solve forward-backward algorithms, to derive R estimates that incorporate all available incidence information. This unifies and extends two popular methods, EpiEstim, which considers past incidence, and the Wallinga-Teunis method, which looks forward in time. We find that this combination of maximising information and minimising assumptions significantly reduces the bias and variance of R estimates. Moreover, these properties make EpiFilter more statistically robust in periods of low incidence, where several existing methods can become destabilised. As a result, EpiFilter offers improved inference of time-varying transmission patterns that are advantageous for assessing the risk of upcoming waves of infection or the influence of interventions, in real time and at various spatial scales.


Asunto(s)
Número Básico de Reproducción/estadística & datos numéricos , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/transmisión , Epidemias/estadística & datos numéricos , Algoritmos , Número Básico de Reproducción/prevención & control , Teorema de Bayes , Sesgo , COVID-19/epidemiología , Control de Enfermedades Transmisibles/estadística & datos numéricos , Biología Computacional , Simulación por Computador , Sistemas de Computación , Epidemias/prevención & control , Monitoreo Epidemiológico , Humanos , Incidencia , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/epidemiología , Modelos Lineales , Cadenas de Markov , Modelos Estadísticos , Nueva Zelanda/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Factores de Tiempo , Estados Unidos/epidemiología
16.
PLoS Comput Biol ; 17(9): e1009367, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34516544

RESUMEN

Gambiense human African trypanosomiasis (gHAT, sleeping sickness) is one of several neglected tropical diseases (NTDs) where there is evidence of asymptomatic human infection but there is uncertainty of the role it plays in transmission and maintenance. To explore possible consequences of asymptomatic infections, particularly in the context of elimination of transmission-a goal set to be achieved by 2030-we propose a novel dynamic transmission model to account for the asymptomatic population. This extends an established framework, basing infection progression on a number of experimental and observation gHAT studies. Asymptomatic gHAT infections include those in people with blood-dwelling trypanosomes, but no discernible symptoms, or those with parasites only detectable in skin. Given current protocols, asymptomatic infection with blood parasites may be diagnosed and treated, based on observable parasitaemia, in contrast to many other diseases for which treatment (and/or diagnosis) may be based on symptomatic infection. We construct a model in which exposed people can either progress to either asymptomatic skin-only parasite infection, which would not be diagnosed through active screening algorithms, or blood-parasite infection, which is likely to be diagnosed if tested. We add extra parameters to the baseline model including different self-cure, recovery, transmission and detection rates for skin-only or blood infections. Performing sensitivity analysis suggests all the new parameters introduced in the asymptomatic model can impact the infection dynamics substantially. Among them, the proportion of exposures resulting in initial skin or blood infection appears the most influential parameter. For some plausible parameterisations, an initial fall in infection prevalence due to interventions could subsequently stagnate even under continued screening due to the formation of a new, lower endemic equilibrium. Excluding this scenario, our results still highlight the possibility for asymptomatic infection to slow down progress towards elimination of transmission. Location-specific model fitting will be needed to determine if and where this could pose a threat.


Asunto(s)
Infecciones Asintomáticas/epidemiología , Modelos Biológicos , Trypanosoma brucei gambiense , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/transmisión , Animales , Número Básico de Reproducción/estadística & datos numéricos , Biología Computacional , Simulación por Computador , Enfermedades Endémicas/prevención & control , Enfermedades Endémicas/estadística & datos numéricos , Humanos , Prevalencia , Tripanosomiasis Africana/prevención & control , Moscas Tse-Tse/parasitología
17.
Comput Math Methods Med ; 2021: 1250129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497662

RESUMEN

We formulate and theoretically analyze a mathematical model of COVID-19 transmission mechanism incorporating vital dynamics of the disease and two key therapeutic measures-vaccination of susceptible individuals and recovery/treatment of infected individuals. Both the disease-free and endemic equilibrium are globally asymptotically stable when the effective reproduction number R 0(v) is, respectively, less or greater than unity. The derived critical vaccination threshold is dependent on the vaccine efficacy for disease eradication whenever R 0(v) > 1, even if vaccine coverage is high. Pontryagin's maximum principle is applied to establish the existence of the optimal control problem and to derive the necessary conditions to optimally mitigate the spread of the disease. The model is fitted with cumulative daily Senegal data, with a basic reproduction number R 0 = 1.31 at the onset of the epidemic. Simulation results suggest that despite the effectiveness of COVID-19 vaccination and treatment to mitigate the spread of COVID-19, when R 0(v) > 1, additional efforts such as nonpharmaceutical public health interventions should continue to be implemented. Using partial rank correlation coefficients and Latin hypercube sampling, sensitivity analysis is carried out to determine the relative importance of model parameters to disease transmission. Results shown graphically could help to inform the process of prioritizing public health intervention measures to be implemented and which model parameter to focus on in order to mitigate the spread of the disease. The effective contact rate b, the vaccine efficacy ε, the vaccination rate v, the fraction of exposed individuals who develop symptoms, and, respectively, the exit rates from the exposed and the asymptomatic classes σ and ϕ are the most impactful parameters.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Modelos Biológicos , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/terapia , Vacunas contra la COVID-19/farmacología , Simulación por Computador , Humanos , Conceptos Matemáticos , Dinámicas no Lineales , Pandemias/prevención & control , Pandemias/estadística & datos numéricos , Salud Pública , SARS-CoV-2 , Senegal/epidemiología , Vacunación
18.
PLoS Comput Biol ; 17(8): e1009264, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437531

RESUMEN

The COVID-19 epidemic has forced most countries to impose contact-limiting restrictions at workplaces, universities, schools, and more broadly in our societies. Yet, the effectiveness of these unprecedented interventions in containing the virus spread remain largely unquantified. Here, we develop a simulation study to analyze COVID-19 outbreaks on three real-life contact networks stemming from a workplace, a primary school and a high school in France. Our study provides a fine-grained analysis of the impact of contact-limiting strategies at workplaces, schools and high schools, including: (1) Rotating strategies, in which workers are evenly split into two shifts that alternate on a daily or weekly basis; and (2) On-Off strategies, where the whole group alternates periods of normal work interactions with complete telecommuting. We model epidemics spread in these different setups using a stochastic discrete-time agent-based transmission model that includes the coronavirus most salient features: super-spreaders, infectious asymptomatic individuals, and pre-symptomatic infectious periods. Our study yields clear results: the ranking of the strategies, based on their ability to mitigate epidemic propagation in the network from a first index case, is the same for all network topologies (workplace, primary school and high school). Namely, from best to worst: Rotating week-by-week, Rotating day-by-day, On-Off week-by-week, and On-Off day-by-day. Moreover, our results show that below a certain threshold for the original local reproduction number [Formula: see text] within the network (< 1.52 for primary schools, < 1.30 for the workplace, < 1.38 for the high school, and < 1.55 for the random graph), all four strategies efficiently control outbreak by decreasing effective local reproduction number to [Formula: see text] < 1. These results can provide guidance for public health decisions related to telecommuting.


Asunto(s)
COVID-19/prevención & control , Brotes de Enfermedades/prevención & control , SARS-CoV-2 , Teletrabajo , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/transmisión , Biología Computacional , Simulación por Computador , Trazado de Contacto , Educación a Distancia/métodos , Educación a Distancia/estadística & datos numéricos , Francia/epidemiología , Humanos , Modelos Biológicos , Admisión y Programación de Personal/estadística & datos numéricos , Salud Pública , Instituciones Académicas , Procesos Estocásticos , Teletrabajo/estadística & datos numéricos , Factores de Tiempo , Lugar de Trabajo
19.
Comput Math Methods Med ; 2021: 5593864, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367319

RESUMEN

A deterministic model was formulated and employed in the analysis of the dynamics of tuberculosis with a keen emphasis on vaccination and drug resistance as the first line of treatment. It was assumed that some of the susceptible population were vaccinated but with temporal immunity. This is due to the fact that vaccines do not confer permanent immunity. Moreover, part of the infected individual after treatment grows resistance to the drug. Infective immigrants were also considered to be part of the population. The basic reproductive number for the model is estimated using the next-generation matrix method. The equilibrium points of the TB model and their local and global stability were determined. It was established that if the basic reproductive number was less than unity (R 0 < 1), then the disease free equilibrium is stable and unstable if R 0 > 1. Furthermore, we investigated the optimal prevention, treatment, and vaccination as control measures for the disease. As the objective functional was optimised, there have been a significant reduction in the number of infections and an increase in the number of recovery. The best control measure in combating tuberculosis infections is prevention and vaccination of the susceptible population.


Asunto(s)
Modelos Biológicos , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/prevención & control , Número Básico de Reproducción/estadística & datos numéricos , Biología Computacional , Simulación por Computador , Susceptibilidad a Enfermedades , Farmacorresistencia Bacteriana/inmunología , Humanos , Conceptos Matemáticos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/farmacología , Tuberculosis Pulmonar/inmunología , Vacunación/estadística & datos numéricos
20.
PLoS One ; 16(7): e0254397, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264960

RESUMEN

Several factors have played a strong role in influencing the dynamics of COVID-19 in the U.S. One being the economy, where a tug of war has existed between lockdown measures to control disease versus loosening of restrictions to address economic hardship. A more recent effect has been availability of vaccines and the mass vaccination efforts of 2021. In order to address the challenges in analyzing this complex process, we developed a competing risk compartmental model framework with and without vaccination compartment. This framework separates instantaneous risk of removal for an infectious case into competing risks of cure and death, and when vaccinations are present, the vaccinated individual can also achieve immunity before infection. Computations are performed using a simple discrete time algorithm that utilizes a data driven contact rate. Using population level pre-vaccination data, we are able to identify and characterize three wave patterns in the U.S. Estimated mortality rates for second and third waves are 1.7%, which is a notable decrease from 8.5% of a first wave observed at onset of disease. This analysis reveals the importance cure time has on infectious duration and disease transmission. Using vaccination data from 2021, we find a fourth wave, however the effect of this wave is suppressed due to vaccine effectiveness. Parameters playing a crucial role in this modeling were a lower cure time and a signficantly lower mortality rate for the vaccinated.


Asunto(s)
Número Básico de Reproducción/estadística & datos numéricos , COVID-19/epidemiología , Vacunación/estadística & datos numéricos , COVID-19/prevención & control , COVID-19/transmisión , Humanos , Modelos Estadísticos , Tasa de Supervivencia/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...